bt monitor
This commit is contained in:
parent
ffeee72652
commit
fe744b2285
|
@ -0,0 +1,95 @@
|
||||||
|
from pathlib import Path
|
||||||
|
import pandas as pd
|
||||||
|
import numpy as np
|
||||||
|
from copy import copy
|
||||||
|
from sklearn.model_selection import cross_val_score
|
||||||
|
from sklearn import svm
|
||||||
|
from sklearn.neural_network import MLPClassifier
|
||||||
|
from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
from sklearn.model_selection import train_test_split
|
||||||
|
|
||||||
|
def load_measurements(csv_file: Path):
|
||||||
|
def cleanup_column_name(col_name: str):
|
||||||
|
clean_name = col_name.replace('#', '').strip()
|
||||||
|
if clean_name == 'room':
|
||||||
|
return 'tracker'
|
||||||
|
return clean_name
|
||||||
|
|
||||||
|
df = pd.read_csv(str(csv_file))
|
||||||
|
|
||||||
|
# String cleanup in column names and room names
|
||||||
|
df = df.rename(columns=cleanup_column_name)
|
||||||
|
df.applymap(lambda x: x.strip() if isinstance(x, str) else x)
|
||||||
|
|
||||||
|
df['tracker'] = df['tracker'].astype("category")
|
||||||
|
df['real_room'] = df['real_room'].astype("category")
|
||||||
|
|
||||||
|
return df
|
||||||
|
|
||||||
|
|
||||||
|
FAR_AWAY_FEATURE_VALUE = 1
|
||||||
|
def get_feature_value(rssi, tx_power):
|
||||||
|
MIN_RSSI = -90
|
||||||
|
MAX_TRANSFORMED_RSSI = 40
|
||||||
|
v = tx_power - rssi - MAX_TRANSFORMED_RSSI
|
||||||
|
if v < 0:
|
||||||
|
v = 0
|
||||||
|
return v / (-MIN_RSSI)
|
||||||
|
|
||||||
|
|
||||||
|
def make_training_data(df: pd.DataFrame, device_to_map):
|
||||||
|
idx_to_tracker = dict(enumerate(df['tracker'].cat.categories ))
|
||||||
|
tracker_to_idx = {v: k for k, v in idx_to_tracker.items()}
|
||||||
|
idx_to_room = dict(enumerate(df['real_room'].cat.categories ))
|
||||||
|
room_to_idx = {v: k for k, v in idx_to_room.items()}
|
||||||
|
|
||||||
|
last_real_room = None
|
||||||
|
start_time = None
|
||||||
|
current_feature = [FAR_AWAY_FEATURE_VALUE] * len(idx_to_tracker)
|
||||||
|
|
||||||
|
features = []
|
||||||
|
labels = []
|
||||||
|
|
||||||
|
# Feature vectors - rssi column for each room
|
||||||
|
for i, row in df.iterrows():
|
||||||
|
time, device, tracker, rssi, tx_power, real_room = row
|
||||||
|
if device != device_to_map:
|
||||||
|
continue
|
||||||
|
if last_real_room != real_room:
|
||||||
|
start_time = time
|
||||||
|
last_real_room = real_room
|
||||||
|
|
||||||
|
tracker_idx = tracker_to_idx[tracker]
|
||||||
|
current_feature[tracker_idx] = get_feature_value(rssi, tx_power)
|
||||||
|
if time - start_time > 20:
|
||||||
|
features.append(copy(current_feature))
|
||||||
|
labels.append(room_to_idx[real_room])
|
||||||
|
|
||||||
|
return np.array(features), np.array(labels)
|
||||||
|
|
||||||
|
def train(features, labels, classes):
|
||||||
|
clf = svm.SVC(kernel='rbf')
|
||||||
|
print("Training")
|
||||||
|
scores = cross_val_score(clf, features, labels, cv=5)
|
||||||
|
print(scores)
|
||||||
|
print("%0.2f accuracy with a standard deviation of %0.2f" % (scores.mean(), scores.std()))
|
||||||
|
|
||||||
|
X_train, X_test, y_train, y_test = train_test_split(features, labels, random_state=0)
|
||||||
|
clf.fit(X_train, y_train)
|
||||||
|
cm = confusion_matrix(clf.predict(X_test), y_test)
|
||||||
|
print(cm)
|
||||||
|
print(classes)
|
||||||
|
disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=classes)
|
||||||
|
disp.plot()
|
||||||
|
plt.show()
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
csv_path = Path("/home/martin/code/ansible/roles/bluetooth-monitor/other/collected.csv")
|
||||||
|
df = load_measurements(csv_path)
|
||||||
|
features, labels = make_training_data(df, "martins_apple_watch")
|
||||||
|
print(np.unique(labels))
|
||||||
|
print(features.shape, labels.shape)
|
||||||
|
train(features, labels, list(df['real_room'].dtype.categories))
|
File diff suppressed because one or more lines are too long
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,121 @@
|
||||||
|
import aiomqtt
|
||||||
|
import json
|
||||||
|
import asyncio
|
||||||
|
from datetime import datetime
|
||||||
|
from time import time
|
||||||
|
from pathlib import Path
|
||||||
|
from collections import namedtuple
|
||||||
|
from typing import Dict
|
||||||
|
from Cryptodome.Cipher import AES
|
||||||
|
|
||||||
|
BtleMeasurement = namedtuple("BtleMeasurement", ["time", "tracker", "address", "rssi", "tx_power"])
|
||||||
|
BtleDeviceMeasurement = namedtuple("BtleDeviceMeasurement", ["time", "device", "tracker", "rssi", "tx_power"])
|
||||||
|
|
||||||
|
|
||||||
|
class KnownRoomCsvLogger:
|
||||||
|
"""Logs known room measurements to be used later as training data for classifier"""
|
||||||
|
|
||||||
|
def __init__(self, csv_file: Path):
|
||||||
|
self.known_room = None
|
||||||
|
|
||||||
|
if csv_file.exists():
|
||||||
|
self.csv_file_handle = open(csv_file, "a")
|
||||||
|
else:
|
||||||
|
self.csv_file_handle = open(csv_file, "w")
|
||||||
|
print(f"#time,device,tracker,rssi,tx_power,real_room", file=csv_file)
|
||||||
|
|
||||||
|
def update_known_room(self, known_room: str):
|
||||||
|
self.known_room = known_room
|
||||||
|
|
||||||
|
def report_measure(self, m: BtleDeviceMeasurement):
|
||||||
|
ignore_rooms = ("keins", "?", "none", "unknown")
|
||||||
|
if self.known_room is None or self.known_room in ignore_rooms:
|
||||||
|
return
|
||||||
|
print(
|
||||||
|
f"{m.time},{m.device},{m.tracker},{m.rssi},{m.tx_power},{self.known_room}",
|
||||||
|
file=self.csv_file_handle,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
class DeviceDecoder:
|
||||||
|
|
||||||
|
def __init__(self, irk_to_devicename: Dict[str, str], address_to_name: Dict[str, str]):
|
||||||
|
"irk_to_devicename is dict with irk as a hex string, mapping to device name"
|
||||||
|
self.irk_to_devicename = {bytes.fromhex(k): v for k, v in irk_to_devicename.items()}
|
||||||
|
self.address_to_name = address_to_name
|
||||||
|
|
||||||
|
def _resolve_rpa(rpa: bytes, irk: bytes) -> bool:
|
||||||
|
"""Compares the random address rpa to an irk (secret key) and return True if it matches"""
|
||||||
|
assert len(rpa) == 6
|
||||||
|
assert len(irk) == 16
|
||||||
|
|
||||||
|
key = irk
|
||||||
|
plain_text = b"\x00" * 16
|
||||||
|
plain_text = bytearray(plain_text)
|
||||||
|
plain_text[15] = rpa[3]
|
||||||
|
plain_text[14] = rpa[4]
|
||||||
|
plain_text[13] = rpa[5]
|
||||||
|
plain_text = bytes(plain_text)
|
||||||
|
|
||||||
|
cipher = AES.new(key, AES.MODE_ECB)
|
||||||
|
cipher_text = cipher.encrypt(plain_text)
|
||||||
|
return cipher_text[15] == rpa[0] and cipher_text[14] == rpa[1] and cipher_text[13] == rpa[2]
|
||||||
|
|
||||||
|
def _addr_to_bytes(addr: str) -> bytes:
|
||||||
|
"""Converts a bluetooth mac address string with semicolons to bytes"""
|
||||||
|
str_without_colons = addr.replace(":", "")
|
||||||
|
bytearr = bytearray.fromhex(str_without_colons)
|
||||||
|
bytearr.reverse()
|
||||||
|
return bytes(bytearr)
|
||||||
|
|
||||||
|
def addr_to_bytes(addr: str) -> bytes:
|
||||||
|
"""Converts a bluetooth mac address string with semicolons to bytes"""
|
||||||
|
str_without_colons = addr.replace(":", "")
|
||||||
|
bytearr = bytearray.fromhex(str_without_colons)
|
||||||
|
bytearr.reverse()
|
||||||
|
return bytes(bytearr)
|
||||||
|
|
||||||
|
def decode(self, addr: str):
|
||||||
|
"""addr is a bluetooth address as a string e.g. 4d:24:12:12:34:10"""
|
||||||
|
for irk, name in self.irk_to_devicename.items():
|
||||||
|
if self.resolve_rpa(self.addr_to_bytes(addr), irk):
|
||||||
|
return name
|
||||||
|
return self.addr_to_name.get(addr, None)
|
||||||
|
|
||||||
|
|
||||||
|
server = "homeassistant.fritz.box"
|
||||||
|
username = "my_btmonitor"
|
||||||
|
password = "8aBIAC14jaKKbla"
|
||||||
|
|
||||||
|
|
||||||
|
async def collect_data_from_mqtt_into_csv():
|
||||||
|
now = datetime.now()
|
||||||
|
with open(f"logfile_{now}.csv", "w") as csv_file:
|
||||||
|
print(f"# time,device,room,rssi,tx_power,real_room", file=csv_file)
|
||||||
|
async with aiomqtt.Client(hostname=server, username=username, password=password) as client:
|
||||||
|
real_room = "?"
|
||||||
|
await client.subscribe("my_btmonitor/#")
|
||||||
|
async for message in client.messages:
|
||||||
|
current_time = time()
|
||||||
|
topic = message.topic
|
||||||
|
if topic.value == "my_btmonitor/real_room":
|
||||||
|
print(f"Changing real room from {real_room} to {message.payload}")
|
||||||
|
real_room = message.payload.decode()
|
||||||
|
else:
|
||||||
|
splitted_topic = message.topic.value.split("/")
|
||||||
|
if splitted_topic[0] == "my_btmonitor" and splitted_topic[1] == "devices":
|
||||||
|
device = splitted_topic[2]
|
||||||
|
room = splitted_topic[3]
|
||||||
|
msg_json = json.loads(message.payload)
|
||||||
|
rssi = msg_json.get("rssi", -1)
|
||||||
|
tx_power = msg_json.get("tx_power", -1)
|
||||||
|
if real_room is not None and real_room != "keins":
|
||||||
|
print(
|
||||||
|
f"{current_time},{device},{room},{rssi},{tx_power},{real_room}",
|
||||||
|
file=csv_file,
|
||||||
|
)
|
||||||
|
print(f"{current_time},{device},{room},{rssi},{tx_power},{real_room}")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
asyncio.run(collect_data_from_mqtt_into_csv())
|
|
@ -117,7 +117,11 @@ async def on_device_found_callback(irks, mqtt_client, room, device, advertising_
|
||||||
"distance": filtered_distance,
|
"distance": filtered_distance,
|
||||||
"unfiltered_distance": distance,
|
"unfiltered_distance": distance,
|
||||||
}
|
}
|
||||||
|
try:
|
||||||
await mqtt_client.publish(topic, json.dumps(data).encode())
|
await mqtt_client.publish(topic, json.dumps(data).encode())
|
||||||
|
except Exception:
|
||||||
|
print("Probably mqtt isn't running - exit whole script and let systemd restart it")
|
||||||
|
exit(1)
|
||||||
#print(data)
|
#print(data)
|
||||||
|
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue