Initial commit
This commit is contained in:
commit
4885497069
|
@ -0,0 +1,12 @@
|
|||
FROM python:3
|
||||
|
||||
WORKDIR /opt/bt_monitor_server
|
||||
|
||||
COPY requirements.txt ./
|
||||
RUN pip install --no-cache-dir -r requirements.txt
|
||||
|
||||
|
||||
#COPY bt_monitor_server.py .
|
||||
#COPY training_data.csv .
|
||||
|
||||
CMD [ "python", "./bt_monitor_server.py" ]
|
|
@ -0,0 +1,95 @@
|
|||
from pathlib import Path
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
from copy import copy
|
||||
from sklearn.model_selection import cross_val_score
|
||||
from sklearn import svm
|
||||
from sklearn.neural_network import MLPClassifier
|
||||
from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay
|
||||
import matplotlib.pyplot as plt
|
||||
from sklearn.model_selection import train_test_split
|
||||
|
||||
def load_measurements(csv_file: Path):
|
||||
def cleanup_column_name(col_name: str):
|
||||
clean_name = col_name.replace('#', '').strip()
|
||||
if clean_name == 'room':
|
||||
return 'tracker'
|
||||
return clean_name
|
||||
|
||||
df = pd.read_csv(str(csv_file))
|
||||
|
||||
# String cleanup in column names and room names
|
||||
df = df.rename(columns=cleanup_column_name)
|
||||
df.applymap(lambda x: x.strip() if isinstance(x, str) else x)
|
||||
|
||||
df['tracker'] = df['tracker'].astype("category")
|
||||
df['real_room'] = df['real_room'].astype("category")
|
||||
|
||||
return df
|
||||
|
||||
|
||||
FAR_AWAY_FEATURE_VALUE = 1
|
||||
def get_feature_value(rssi, tx_power):
|
||||
MIN_RSSI = -90
|
||||
MAX_TRANSFORMED_RSSI = 40
|
||||
v = tx_power - rssi - MAX_TRANSFORMED_RSSI
|
||||
if v < 0:
|
||||
v = 0
|
||||
return v / (-MIN_RSSI)
|
||||
|
||||
|
||||
def make_training_data(df: pd.DataFrame, device_to_map):
|
||||
idx_to_tracker = dict(enumerate(df['tracker'].cat.categories ))
|
||||
tracker_to_idx = {v: k for k, v in idx_to_tracker.items()}
|
||||
idx_to_room = dict(enumerate(df['real_room'].cat.categories ))
|
||||
room_to_idx = {v: k for k, v in idx_to_room.items()}
|
||||
|
||||
last_real_room = None
|
||||
start_time = None
|
||||
current_feature = [FAR_AWAY_FEATURE_VALUE] * len(idx_to_tracker)
|
||||
|
||||
features = []
|
||||
labels = []
|
||||
|
||||
# Feature vectors - rssi column for each room
|
||||
for i, row in df.iterrows():
|
||||
time, device, tracker, rssi, tx_power, real_room = row
|
||||
if device != device_to_map:
|
||||
continue
|
||||
if last_real_room != real_room:
|
||||
start_time = time
|
||||
last_real_room = real_room
|
||||
|
||||
tracker_idx = tracker_to_idx[tracker]
|
||||
current_feature[tracker_idx] = get_feature_value(rssi, tx_power)
|
||||
if time - start_time > 20:
|
||||
features.append(copy(current_feature))
|
||||
labels.append(room_to_idx[real_room])
|
||||
|
||||
return np.array(features), np.array(labels)
|
||||
|
||||
def train(features, labels, classes):
|
||||
clf = svm.SVC(kernel='rbf')
|
||||
print("Training")
|
||||
scores = cross_val_score(clf, features, labels, cv=5)
|
||||
print(scores)
|
||||
print("%0.2f accuracy with a standard deviation of %0.2f" % (scores.mean(), scores.std()))
|
||||
|
||||
X_train, X_test, y_train, y_test = train_test_split(features, labels, random_state=0)
|
||||
clf.fit(X_train, y_train)
|
||||
cm = confusion_matrix(clf.predict(X_test), y_test)
|
||||
print(cm)
|
||||
print(classes)
|
||||
disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=classes)
|
||||
disp.plot()
|
||||
plt.show()
|
||||
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
csv_path = Path("/home/martin/code/ansible/roles/bluetooth-monitor/other/collected.csv")
|
||||
df = load_measurements(csv_path)
|
||||
features, labels = make_training_data(df, "martins_apple_watch")
|
||||
print(np.unique(labels))
|
||||
print(features.shape, labels.shape)
|
||||
train(features, labels, list(df['real_room'].dtype.categories))
|
File diff suppressed because one or more lines are too long
|
@ -0,0 +1,269 @@
|
|||
#!/usr/bin/env python3
|
||||
|
||||
import aiomqtt
|
||||
import json
|
||||
import asyncio
|
||||
from time import time
|
||||
from pathlib import Path
|
||||
from collections import namedtuple, defaultdict
|
||||
from typing import Dict, Optional, List
|
||||
from Crypto.Cipher import AES
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
from copy import copy
|
||||
import logging
|
||||
from sklearn import svm
|
||||
from sklearn.model_selection import cross_val_score
|
||||
|
||||
logging.basicConfig(level=logging.INFO)
|
||||
|
||||
BtleMeasurement = namedtuple("BtleMeasurement", ["time", "tracker", "address", "rssi", "tx_power"])
|
||||
BtleDeviceMeasurement = namedtuple("BtleDeviceMeasurement", ["time", "device", "tracker", "rssi", "tx_power"])
|
||||
MqttInfo = namedtuple("MqttInfo", ["server", "username", "password"])
|
||||
|
||||
# ------------------------------------------------------- DECODING -------------------------------------------------------------------------
|
||||
|
||||
|
||||
class DeviceDecoder:
|
||||
"""Decode bluetooth addresses - either simple ones (just address to name) or random changing ones like Apple devices using irk keys"""
|
||||
|
||||
def __init__(self, irk_to_devicename: Dict[str, str], address_to_name: Dict[str, str]):
|
||||
"""
|
||||
address_to_name: dictionary from bt address as string separated by ":" to a device name
|
||||
irk_to_devicename is dict with irk as a hex string, mapping to device name
|
||||
"""
|
||||
self.irk_to_devicename = {bytes.fromhex(k): v for k, v in irk_to_devicename.items()}
|
||||
self.address_to_name = address_to_name
|
||||
|
||||
def _resolve_rpa(rpa: bytes, irk: bytes) -> bool:
|
||||
"""Compares the random address rpa to an irk (secret key) and return True if it matches"""
|
||||
assert len(rpa) == 6
|
||||
assert len(irk) == 16
|
||||
|
||||
key = irk
|
||||
plain_text = b"\x00" * 16
|
||||
plain_text = bytearray(plain_text)
|
||||
plain_text[15] = rpa[3]
|
||||
plain_text[14] = rpa[4]
|
||||
plain_text[13] = rpa[5]
|
||||
plain_text = bytes(plain_text)
|
||||
|
||||
cipher = AES.new(key, AES.MODE_ECB)
|
||||
cipher_text = cipher.encrypt(plain_text)
|
||||
return cipher_text[15] == rpa[0] and cipher_text[14] == rpa[1] and cipher_text[13] == rpa[2]
|
||||
|
||||
def _addr_to_bytes(addr: str) -> bytes:
|
||||
"""Converts a bluetooth mac address string with semicolons to bytes"""
|
||||
str_without_colons = addr.replace(":", "")
|
||||
bytearr = bytearray.fromhex(str_without_colons)
|
||||
bytearr.reverse()
|
||||
return bytes(bytearr)
|
||||
|
||||
def decode(self, addr: str) -> Optional[str]:
|
||||
"""addr is a bluetooth address as a string e.g. 4d:24:12:12:34:10"""
|
||||
for irk, name in self.irk_to_devicename.items():
|
||||
if DeviceDecoder._resolve_rpa(DeviceDecoder._addr_to_bytes(addr), irk):
|
||||
return name
|
||||
return self.address_to_name.get(addr, None)
|
||||
|
||||
def __call__(self, m: BtleMeasurement) -> Optional[BtleDeviceMeasurement]:
|
||||
decoded_device_name = self.decode(m.address)
|
||||
if not decoded_device_name:
|
||||
return None
|
||||
return BtleDeviceMeasurement(m.time, decoded_device_name, m.tracker, m.rssi, m.tx_power)
|
||||
|
||||
|
||||
# ------------------------------------------------------- MACHINE LEARNING ----------------------------------------------------------------
|
||||
|
||||
|
||||
class KnownRoomCsvLogger:
|
||||
"""Logs known room measurements to be used later as training data for classifier"""
|
||||
|
||||
def __init__(self, csv_file: Path):
|
||||
self.known_room = None
|
||||
|
||||
if csv_file.exists():
|
||||
self.csv_file_handle = open(csv_file, "a")
|
||||
else:
|
||||
self.csv_file_handle = open(csv_file, "w")
|
||||
print(f"#time,device,tracker,rssi,tx_power,known_room", file=csv_file)
|
||||
|
||||
def update_known_room(self, known_room: str):
|
||||
if known_room != self.known_room:
|
||||
logging.info(f"Updating known_room {self.known_room} -> {known_room}")
|
||||
self.known_room = known_room
|
||||
|
||||
def report_measure(self, m: BtleDeviceMeasurement):
|
||||
ignore_rooms = ("keins", "?", "none", "unknown")
|
||||
if self.known_room is None or self.known_room in ignore_rooms:
|
||||
return
|
||||
logging.info(f"Appending to training set: {m}")
|
||||
print(
|
||||
f"{m.time},{m.device},{m.tracker},{m.rssi},{m.tx_power},{self.known_room}",
|
||||
file=self.csv_file_handle,)
|
||||
|
||||
|
||||
FAR_AWAY_FEATURE_VALUE = 1
|
||||
|
||||
|
||||
def get_feature_value(rssi, tx_power):
|
||||
"""Transforms rssi and tx power into a value between 0 and 1, where 0 is close and 1 is far away"""
|
||||
MIN_RSSI = -90
|
||||
MAX_TRANSFORMED_RSSI = 40
|
||||
v = tx_power - rssi - MAX_TRANSFORMED_RSSI
|
||||
if v < 0:
|
||||
v = 0
|
||||
return v / (-MIN_RSSI)
|
||||
|
||||
|
||||
def training_data_from_df(df: pd.DataFrame, device: str):
|
||||
"""Returns a feature matrix (num_measurement, num_trackers) and a label vector (both numeric) to be used in scikit learn"""
|
||||
idx_to_tracker = dict(enumerate(df["tracker"].cat.categories))
|
||||
tracker_to_idx = {v: k for k, v in idx_to_tracker.items()}
|
||||
idx_to_room = dict(enumerate(df["known_room"].cat.categories))
|
||||
room_to_idx = {v: k for k, v in idx_to_room.items()}
|
||||
|
||||
last_known_room = None
|
||||
start_time = None
|
||||
current_feature = [FAR_AWAY_FEATURE_VALUE] * len(idx_to_tracker)
|
||||
|
||||
features = []
|
||||
labels = []
|
||||
|
||||
# Feature vectors - rssi column for each room
|
||||
for i, row in df.iterrows():
|
||||
time, device, tracker, rssi, tx_power, known_room = row
|
||||
if device != device:
|
||||
continue
|
||||
if last_known_room != known_room:
|
||||
start_time = time
|
||||
last_known_room = known_room
|
||||
|
||||
tracker_idx = tracker_to_idx[tracker]
|
||||
current_feature[tracker_idx] = get_feature_value(rssi, tx_power)
|
||||
if time - start_time > 20: # Wait 20secs to have measurements from all trackers
|
||||
features.append(copy(current_feature))
|
||||
labels.append(room_to_idx[known_room])
|
||||
|
||||
return np.array(features), np.array(labels)
|
||||
|
||||
|
||||
def load_measurements_from_csv(csv_file: Path) -> pd.DataFrame:
|
||||
"""Load csv with training data into dataframe"""
|
||||
|
||||
def cleanup_column_name(col_name: str):
|
||||
return col_name.replace("#", "").strip()
|
||||
|
||||
df = pd.read_csv(str(csv_file))
|
||||
|
||||
# String cleanup in column names and room names
|
||||
df = df.rename(columns=cleanup_column_name)
|
||||
df.map(lambda x: x.strip() if isinstance(x, str) else x)
|
||||
|
||||
df["tracker"] = df["tracker"].astype("category")
|
||||
df["known_room"] = df["known_room"].astype("category")
|
||||
df['device'] = df['device'].astype("category")
|
||||
|
||||
return df
|
||||
|
||||
|
||||
async def send_discovery_messages(mqtt_client, device_names):
|
||||
for device_name in device_names:
|
||||
topic = f"homeassistant/sensor/my_btmonitor/{device_name}/config"
|
||||
msg = {
|
||||
"name": device_name,
|
||||
"state_topic": f"my_btmonitor/ml/{device_name}",
|
||||
"expire_after": 30,
|
||||
"unique_id": device_name,
|
||||
}
|
||||
await mqtt_client.publish(topic, json.dumps(msg).encode(), retain=True)
|
||||
|
||||
|
||||
async def async_main(
|
||||
mqtt_info: MqttInfo,
|
||||
trackers: List[str],
|
||||
devices: List[str],
|
||||
classifier,
|
||||
device_decoder: DeviceDecoder,
|
||||
training_data_logger: KnownRoomCsvLogger,
|
||||
):
|
||||
feature_vecs_per_device = defaultdict(lambda: [FAR_AWAY_FEATURE_VALUE] * len(trackers))
|
||||
current_rooms = defaultdict(lambda: "unknown")
|
||||
tracker_name_to_idx = {name: i for i, name in enumerate(trackers)}
|
||||
async with aiomqtt.Client(
|
||||
hostname=mqtt_info.server, username=mqtt_info.username, password=mqtt_info.password
|
||||
) as client:
|
||||
await send_discovery_messages(client, devices)
|
||||
await client.subscribe("my_btmonitor/#")
|
||||
async for message in client.messages:
|
||||
current_time = time()
|
||||
topic = message.topic
|
||||
if topic.value == "my_btmonitor/known_room":
|
||||
training_data_logger.update_known_room(message.payload.decode())
|
||||
else:
|
||||
splitted_topic = message.topic.value.split("/")
|
||||
if splitted_topic[0] == "my_btmonitor" and splitted_topic[1] == "raw_measurements":
|
||||
msg_json = json.loads(message.payload)
|
||||
measurement = BtleMeasurement(
|
||||
time=current_time,
|
||||
tracker=splitted_topic[2],
|
||||
address=msg_json["address"],
|
||||
rssi=msg_json["rssi"],
|
||||
tx_power=msg_json.get("tx_power", 0),
|
||||
)
|
||||
logging.debug(f"Got Measurement {measurement}")
|
||||
m = device_decoder(measurement)
|
||||
if m is not None:
|
||||
logging.debug(f"Decoded Measurement {m}")
|
||||
training_data_logger.report_measure(m)
|
||||
tracker_idx = tracker_name_to_idx[m.tracker]
|
||||
feature_vecs_per_device[m.device][tracker_idx] = get_feature_value(m.rssi, m.tx_power)
|
||||
if classifier is not None:
|
||||
room = classifier(m.device, feature_vecs_per_device[m.device])
|
||||
if room != current_rooms[m.device]:
|
||||
logging.info(f"{m.device} moved room {current_rooms[m.device]} to {room}")
|
||||
current_rooms[m.device] = room
|
||||
await client.publish(f"my_btmonitor/ml/{m.device}", room.encode())
|
||||
|
||||
|
||||
def get_classification_func(training_df: pd.DataFrame, log_classifier_scores=False):
|
||||
devices_to_track = list(training_df["device"].unique())
|
||||
classifiers = {}
|
||||
rooms = list(training_df["known_room"].dtype.categories)
|
||||
for device_to_track in devices_to_track:
|
||||
features, labels = training_data_from_df(training_df, devices_to_track)
|
||||
clf = svm.SVC(kernel="rbf")
|
||||
logging.info(f"Computing cross validation score for {device_to_track}")
|
||||
if log_classifier_scores:
|
||||
scores = cross_val_score(clf, features, labels, cv=5)
|
||||
logging.info(" %0.2f accuracy with a standard deviation of %0.2f" % (scores.mean(), scores.std()))
|
||||
|
||||
logging.info(f"Training SVM classifier for {device_to_track}")
|
||||
clf.fit(features, labels)
|
||||
classifiers[device_to_track] = clf
|
||||
|
||||
def classify(device_name, feature_vec):
|
||||
room_idx = classifiers[device_name].predict([feature_vec])[0]
|
||||
return rooms[room_idx]
|
||||
|
||||
return classify
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
mqtt_info = MqttInfo(server="homeassistant.fritz.box", username="my_btmonitor", password="8aBIAC14jaKKbla")
|
||||
# Dict with bt addresses as strings to device name
|
||||
address_to_name = {}
|
||||
# Devices with random addresses - need irk key
|
||||
irk_to_devicename = {
|
||||
"aa67542b82c0e05d65c27fb7e313aba5": "martins_apple_watch",
|
||||
"840e3892644c1ebd1594a9069c14ce0d": "martins_iphone",
|
||||
}
|
||||
|
||||
data_file = Path("training_data.csv")
|
||||
training_df = load_measurements_from_csv(data_file)
|
||||
classification_func = get_classification_func(training_df)
|
||||
training_data_logger = KnownRoomCsvLogger(data_file)
|
||||
device_decoder = DeviceDecoder(irk_to_devicename, address_to_name)
|
||||
trackers = list(training_df["tracker"].cat.categories)
|
||||
devices = list(training_df['device'].cat.categories)
|
||||
asyncio.run(async_main(mqtt_info, trackers, devices, classification_func, device_decoder, training_data_logger))
|
|
@ -0,0 +1,6 @@
|
|||
services:
|
||||
bt_monitor_server:
|
||||
build: .
|
||||
volumes:
|
||||
- .:/opt/bt_monitor_server
|
||||
|
|
@ -0,0 +1,7 @@
|
|||
aiomqtt==2.0.0
|
||||
numpy==1.26.4
|
||||
pandas==2.2.1
|
||||
pycryptodome==3.20.0
|
||||
scikit-learn==1.4.1.post1
|
||||
scipy==1.12.0
|
||||
typing_extensions==4.10.0
|
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue