musicmouse/espmusicmouse/lib/rotary_encoder/rotary_encoder.c

346 lines
11 KiB
C
Raw Permalink Normal View History

2021-10-27 16:40:18 +02:00
/*
* Copyright (c) 2019 David Antliff
* Copyright 2011 Ben Buxton
*
* This file is part of the esp32-rotary-encoder component.
*
* esp32-rotary-encoder is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* esp32-rotary-encoder is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with esp32-rotary-encoder. If not, see <https://www.gnu.org/licenses/>.
*/
/**
* @file rotary_encoder.c
* @brief Driver implementation for the ESP32-compatible Incremental Rotary Encoder component.
*
* Based on https://github.com/buxtronix/arduino/tree/master/libraries/Rotary
* Original header follows:
*
* Rotary encoder handler for arduino. v1.1
*
* Copyright 2011 Ben Buxton. Licenced under the GNU GPL Version 3.
* Contact: bb@cactii.net
*
* A typical mechanical rotary encoder emits a two bit gray code
* on 3 output pins. Every step in the output (often accompanied
* by a physical 'click') generates a specific sequence of output
* codes on the pins.
*
* There are 3 pins used for the rotary encoding - one common and
* two 'bit' pins.
*
* The following is the typical sequence of code on the output when
* moving from one step to the next:
*
* Position Bit1 Bit2
* ----------------------
* Step1 0 0
* 1/4 1 0
* 1/2 1 1
* 3/4 0 1
* Step2 0 0
*
* From this table, we can see that when moving from one 'click' to
* the next, there are 4 changes in the output code.
*
* - From an initial 0 - 0, Bit1 goes high, Bit0 stays low.
* - Then both bits are high, halfway through the step.
* - Then Bit1 goes low, but Bit2 stays high.
* - Finally at the end of the step, both bits return to 0.
*
* Detecting the direction is easy - the table simply goes in the other
* direction (read up instead of down).
*
* To decode this, we use a simple state machine. Every time the output
* code changes, it follows state, until finally a full steps worth of
* code is received (in the correct order). At the final 0-0, it returns
* a value indicating a step in one direction or the other.
*
* It's also possible to use 'half-step' mode. This just emits an event
* at both the 0-0 and 1-1 positions. This might be useful for some
* encoders where you want to detect all positions.
*
* If an invalid state happens (for example we go from '0-1' straight
* to '1-0'), the state machine resets to the start until 0-0 and the
* next valid codes occur.
*
* The biggest advantage of using a state machine over other algorithms
* is that this has inherent debounce built in. Other algorithms emit spurious
* output with switch bounce, but this one will simply flip between
* sub-states until the bounce settles, then continue along the state
* machine.
* A side effect of debounce is that fast rotations can cause steps to
* be skipped. By not requiring debounce, fast rotations can be accurately
* measured.
* Another advantage is the ability to properly handle bad state, such
* as due to EMI, etc.
* It is also a lot simpler than others - a static state table and less
* than 10 lines of logic.
*/
#include "rotary_encoder.h"
#include "esp_log.h"
#include "driver/gpio.h"
#define TAG "rotary_encoder"
//#define ROTARY_ENCODER_DEBUG
// Use a single-item queue so that the last value can be easily overwritten by the interrupt handler
#define EVENT_QUEUE_LENGTH 1
#define TABLE_ROWS 7
#define DIR_NONE 0x0 // No complete step yet.
#define DIR_CW 0x10 // Clockwise step.
#define DIR_CCW 0x20 // Anti-clockwise step.
// Create the half-step state table (emits a code at 00 and 11)
#define R_START 0x0
#define H_CCW_BEGIN 0x1
#define H_CW_BEGIN 0x2
#define H_START_M 0x3
#define H_CW_BEGIN_M 0x4
#define H_CCW_BEGIN_M 0x5
static const uint8_t _ttable_half[TABLE_ROWS][TABLE_COLS] = {
// 00 01 10 11 // BA
{H_START_M, H_CW_BEGIN, H_CCW_BEGIN, R_START}, // R_START (00)
{H_START_M | DIR_CCW, R_START, H_CCW_BEGIN, R_START}, // H_CCW_BEGIN
{H_START_M | DIR_CW, H_CW_BEGIN, R_START, R_START}, // H_CW_BEGIN
{H_START_M, H_CCW_BEGIN_M, H_CW_BEGIN_M, R_START}, // H_START_M (11)
{H_START_M, H_START_M, H_CW_BEGIN_M, R_START | DIR_CW}, // H_CW_BEGIN_M
{H_START_M, H_CCW_BEGIN_M, H_START_M, R_START | DIR_CCW}, // H_CCW_BEGIN_M
};
// Create the full-step state table (emits a code at 00 only)
# define F_CW_FINAL 0x1
# define F_CW_BEGIN 0x2
# define F_CW_NEXT 0x3
# define F_CCW_BEGIN 0x4
# define F_CCW_FINAL 0x5
# define F_CCW_NEXT 0x6
static const uint8_t _ttable_full[TABLE_ROWS][TABLE_COLS] = {
// 00 01 10 11 // BA
{R_START, F_CW_BEGIN, F_CCW_BEGIN, R_START}, // R_START
{F_CW_NEXT, R_START, F_CW_FINAL, R_START | DIR_CW}, // F_CW_FINAL
{F_CW_NEXT, F_CW_BEGIN, R_START, R_START}, // F_CW_BEGIN
{F_CW_NEXT, F_CW_BEGIN, F_CW_FINAL, R_START}, // F_CW_NEXT
{F_CCW_NEXT, R_START, F_CCW_BEGIN, R_START}, // F_CCW_BEGIN
{F_CCW_NEXT, F_CCW_FINAL, R_START, R_START | DIR_CCW}, // F_CCW_FINAL
{F_CCW_NEXT, F_CCW_FINAL, F_CCW_BEGIN, R_START}, // F_CCW_NEXT
};
static uint8_t _process(rotary_encoder_info_t * info)
{
uint8_t event = 0;
if (info != NULL)
{
// Get state of input pins.
uint8_t pin_state = (gpio_get_level(info->pin_b) << 1) | gpio_get_level(info->pin_a);
// Determine new state from the pins and state table.
#ifdef ROTARY_ENCODER_DEBUG
uint8_t old_state = info->table_state;
#endif
info->table_state = info->table[info->table_state & 0xf][pin_state];
// Return emit bits, i.e. the generated event.
event = info->table_state & 0x30;
#ifdef ROTARY_ENCODER_DEBUG
ESP_EARLY_LOGD(TAG, "BA %d%d, state 0x%02x, new state 0x%02x, event 0x%02x",
pin_state >> 1, pin_state & 1, old_state, info->table_state, event);
#endif
}
return event;
}
static void _isr_rotenc(void * args)
{
rotary_encoder_info_t * info = (rotary_encoder_info_t *)args;
uint8_t event = _process(info);
bool send_event = false;
switch (event)
{
case DIR_CW:
++info->state.position;
info->state.direction = ROTARY_ENCODER_DIRECTION_CLOCKWISE;
send_event = true;
break;
case DIR_CCW:
--info->state.position;
info->state.direction = ROTARY_ENCODER_DIRECTION_COUNTER_CLOCKWISE;
send_event = true;
break;
default:
break;
}
if (send_event && info->queue)
{
rotary_encoder_event_t queue_event =
{
.state =
{
.position = info->state.position,
.direction = info->state.direction,
},
};
BaseType_t task_woken = pdFALSE;
xQueueOverwriteFromISR(info->queue, &queue_event, &task_woken);
if (task_woken)
{
portYIELD_FROM_ISR();
}
}
}
esp_err_t rotary_encoder_init(rotary_encoder_info_t * info, gpio_num_t pin_a, gpio_num_t pin_b)
{
esp_err_t err = ESP_OK;
if (info)
{
info->pin_a = pin_a;
info->pin_b = pin_b;
info->table = &_ttable_full[0]; //enable_half_step ? &_ttable_half[0] : &_ttable_full[0];
info->table_state = R_START;
info->state.position = 0;
info->state.direction = ROTARY_ENCODER_DIRECTION_NOT_SET;
// configure GPIOs
gpio_pad_select_gpio(info->pin_a);
gpio_set_pull_mode(info->pin_a, GPIO_PULLUP_ONLY);
gpio_set_direction(info->pin_a, GPIO_MODE_INPUT);
gpio_set_intr_type(info->pin_a, GPIO_INTR_ANYEDGE);
gpio_pad_select_gpio(info->pin_b);
gpio_set_pull_mode(info->pin_b, GPIO_PULLUP_ONLY);
gpio_set_direction(info->pin_b, GPIO_MODE_INPUT);
gpio_set_intr_type(info->pin_b, GPIO_INTR_ANYEDGE);
// install interrupt handlers
gpio_isr_handler_add(info->pin_a, _isr_rotenc, info);
gpio_isr_handler_add(info->pin_b, _isr_rotenc, info);
}
else
{
ESP_LOGE(TAG, "info is NULL");
err = ESP_ERR_INVALID_ARG;
}
return err;
}
esp_err_t rotary_encoder_enable_half_steps(rotary_encoder_info_t * info, bool enable)
{
esp_err_t err = ESP_OK;
if (info)
{
info->table = enable ? &_ttable_half[0] : &_ttable_full[0];
info->table_state = R_START;
}
else
{
ESP_LOGE(TAG, "info is NULL");
err = ESP_ERR_INVALID_ARG;
}
return err;
}
esp_err_t rotary_encoder_flip_direction(rotary_encoder_info_t * info)
{
esp_err_t err = ESP_OK;
if (info)
{
gpio_num_t temp = info->pin_a;
info->pin_a = info->pin_b;
info->pin_b = temp;
}
else
{
ESP_LOGE(TAG, "info is NULL");
err = ESP_ERR_INVALID_ARG;
}
return err;
}
esp_err_t rotary_encoder_uninit(rotary_encoder_info_t * info)
{
esp_err_t err = ESP_OK;
if (info)
{
gpio_isr_handler_remove(info->pin_a);
gpio_isr_handler_remove(info->pin_b);
}
else
{
ESP_LOGE(TAG, "info is NULL");
err = ESP_ERR_INVALID_ARG;
}
return err;
}
QueueHandle_t rotary_encoder_create_queue(void)
{
return xQueueCreate(EVENT_QUEUE_LENGTH, sizeof(rotary_encoder_event_t));
}
esp_err_t rotary_encoder_set_queue(rotary_encoder_info_t * info, QueueHandle_t queue)
{
esp_err_t err = ESP_OK;
if (info)
{
info->queue = queue;
}
else
{
ESP_LOGE(TAG, "info is NULL");
err = ESP_ERR_INVALID_ARG;
}
return err;
}
esp_err_t rotary_encoder_get_state(const rotary_encoder_info_t * info, rotary_encoder_state_t * state)
{
esp_err_t err = ESP_OK;
if (info && state)
{
// make a snapshot of the state
state->position = info->state.position;
state->direction = info->state.direction;
}
else
{
ESP_LOGE(TAG, "info and/or state is NULL");
err = ESP_ERR_INVALID_ARG;
}
return err;
}
esp_err_t rotary_encoder_reset(rotary_encoder_info_t * info)
{
esp_err_t err = ESP_OK;
if (info)
{
info->state.position = 0;
info->state.direction = ROTARY_ENCODER_DIRECTION_NOT_SET;
}
else
{
ESP_LOGE(TAG, "info is NULL");
err = ESP_ERR_INVALID_ARG;
}
return err;
}