New led control

This commit is contained in:
Martin Bauer 2021-11-16 22:04:22 +01:00
parent 6a5d4c463c
commit c68114dc4c
13 changed files with 961 additions and 19 deletions

File diff suppressed because one or more lines are too long

View File

@ -0,0 +1,56 @@
#include "LedControl.h"
class LedAnimation
{
public:
/// Sets leds in the strip and returns number of milliseconds to wait until it is called again
virtual int operator()(LedStrip &leds) = 0;
};
class SweepCircularAnimation : public LedAnimation
{
public:
SweepCircularAnimation(const ColorRGB &color, int delayMs = 100, int numLedsHalfWidth = 3, float brightnessFallOff = 0.8)
: color_(color), delayMs_(delayMs), numLedsHalfWidth_(numLedsHalfWidth), brightnessFallOff_(brightnessFallOff), currentCenter_(0)
{
}
int operator()(LedStrip &leds) override
{
for (int i = 0; i < leds.numLeds(); ++i)
leds.setColor(i, 0, 0, 0, 0);
leds.setColor(currentCenter_, color_);
ColorRGB currColor = color_;
for (int i = 1; i <= numLedsHalfWidth_; ++i)
{
currColor.r = uint8_t(float(currColor.r) * brightnessFallOff_);
currColor.g = uint8_t(float(currColor.g) * brightnessFallOff_);
currColor.b = uint8_t(float(currColor.b) * brightnessFallOff_);
leds.setColor(leds.normalizeLedIdx(currentCenter_ - i), currColor);
leds.setColor(leds.normalizeLedIdx(currentCenter_ + i), currColor);
}
currentCenter_ = leds.normalizeLedIdx(currentCenter_ + 1);
return delayMs_;
}
private:
// parameters
ColorRGB color_;
int delayMs_;
int numLedsHalfWidth_; // number of leds on to the left and right of center
float brightnessFallOff_;
// state
int currentCenter_;
};
// strategy:
// use queue to send animation pointers over
// task calls animate function and waits for new even in queue with timeout of next due call
//
void setAnimation(LedAnimation *animation)
{
}

View File

@ -3,6 +3,85 @@
#include "esp32_digital_led_lib.h" #include "esp32_digital_led_lib.h"
#include "Arduino.h" #include "Arduino.h"
#define HSV_SECTION_6 (0x20)
#define HSV_SECTION_3 (0x40)
static ColorRGB hsv2rgb(const ColorHSV &hsv)
{
// Convert hue, saturation and brightness ( HSV/HSB ) to RGB
// "Dimming" is used on saturation and brightness to make
// the output more visually linear.
// Apply dimming curves
uint8_t value = hsv.v;
uint8_t saturation = hsv.s;
// The brightness floor is minimum number that all of
// R, G, and B will be set to.
uint8_t invsat = 255 - saturation;
uint8_t brightness_floor = (value * invsat) / 256;
// The color amplitude is the maximum amount of R, G, and B
// that will be added on top of the brightness_floor to
// create the specific hue desired.
uint8_t color_amplitude = value - brightness_floor;
// Figure out which section of the hue wheel we're in,
// and how far offset we are withing that section
uint8_t section = hsv.h / HSV_SECTION_3; // 0..2
uint8_t offset = hsv.h % HSV_SECTION_3; // 0..63
uint8_t rampup = offset; // 0..63
uint8_t rampdown = (HSV_SECTION_3 - 1) - offset; // 63..0
// We now scale rampup and rampdown to a 0-255 range -- at least
// in theory, but here's where architecture-specific decsions
// come in to play:
// To scale them up to 0-255, we'd want to multiply by 4.
// But in the very next step, we multiply the ramps by other
// values and then divide the resulting product by 256.
// So which is faster?
// ((ramp * 4) * othervalue) / 256
// or
// ((ramp ) * othervalue) / 64
// It depends on your processor architecture.
// On 8-bit AVR, the "/ 256" is just a one-cycle register move,
// but the "/ 64" might be a multicycle shift process. So on AVR
// it's faster do multiply the ramp values by four, and then
// divide by 256.
// On ARM, the "/ 256" and "/ 64" are one cycle each, so it's
// faster to NOT multiply the ramp values by four, and just to
// divide the resulting product by 64 (instead of 256).
// Moral of the story: trust your profiler, not your insticts.
// Since there's an AVR assembly version elsewhere, we'll
// assume what we're on an architecture where any number of
// bit shifts has roughly the same cost, and we'll remove the
// redundant math at the source level:
// // scale up to 255 range
// //rampup *= 4; // 0..252
// //rampdown *= 4; // 0..252
// compute color-amplitude-scaled-down versions of rampup and rampdown
uint8_t rampup_amp_adj = (rampup * color_amplitude) / (256 / 4);
uint8_t rampdown_amp_adj = (rampdown * color_amplitude) / (256 / 4);
// add brightness_floor offset to everything
uint8_t rampup_adj_with_floor = rampup_amp_adj + brightness_floor;
uint8_t rampdown_adj_with_floor = rampdown_amp_adj + brightness_floor;
if (section)
{
if (section == 1)
return ColorRGB{brightness_floor, rampdown_adj_with_floor, rampup_adj_with_floor};
else
return ColorRGB{rampup_adj_with_floor, brightness_floor, rampdown_adj_with_floor};
}
else
return ColorRGB{rampdown_adj_with_floor, rampup_adj_with_floor, brightness_floor};
}
LedStrip::LedStrip(int numLeds, int pin) LedStrip::LedStrip(int numLeds, int pin)
: numLeds_(numLeds), pin_(pin) : numLeds_(numLeds), pin_(pin)
{ {
@ -25,6 +104,15 @@ void LedStrip::clear()
digitalLeds_resetPixels(strands, 1); digitalLeds_resetPixels(strands, 1);
} }
int LedStrip::normalizeLedIdx(int i)
{
while (i < 0)
i += numLeds_;
while (i >= numLeds_)
i -= numLeds_;
return i;
}
void LedStrip::setColor(int led, int r, int g, int b, int w) void LedStrip::setColor(int led, int r, int g, int b, int w)
{ {
strands[0]->pixels[led] = pixelFromRGBW(r, g, b, w); strands[0]->pixels[led] = pixelFromRGBW(r, g, b, w);
@ -46,3 +134,13 @@ void LedStrip::setRange(int begin, int end, int r, int g, int b, int w)
for (int i = begin; i < min(end, numLeds_); ++i) for (int i = begin; i < min(end, numLeds_); ++i)
setColor(i, r, g, b, w); setColor(i, r, g, b, w);
} }
void LedStrip::setColor(int led, const ColorRGB &color)
{
setColor(led, color.r, color.g, color.b, 0);
}
void LedStrip::setColor(int led, const ColorHSV &color)
{
setColor(led, hsv2rgb(color));
}

View File

@ -1,5 +1,15 @@
#pragma once
#include "esp32_digital_led_lib.h" #include "esp32_digital_led_lib.h"
struct ColorRGB
{
uint8_t r, g, b;
};
struct ColorHSV
{
uint8_t h, s, v;
};
class LedStrip class LedStrip
{ {
@ -9,11 +19,16 @@ public:
void begin(); void begin();
void setColor(int led, int r, int g, int b, int w); void setColor(int led, int r, int g, int b, int w);
void setColor(int led, const ColorRGB &color);
void setColor(int led, const ColorHSV &color);
void transmit(); void transmit();
void clear(); void clear();
void setAll(int r, int g, int b, int w); void setAll(int r, int g, int b, int w);
void setRange(int begin, int end, int r, int g, int b, int w); void setRange(int begin, int end, int r, int g, int b, int w);
int numLeds() const { return numLeds_; } int numLeds() const { return numLeds_; }
int normalizeLedIdx(int i);
private: private:
strand_t cfg; strand_t cfg;
strand_t *strands[1]; strand_t *strands[1];

View File

@ -0,0 +1,105 @@
#include "drivers/Esp32DriverRGBW.h"
#include <driver/gpio.h>
#include <driver/rmt.h>
// Timing constants
static constexpr uint16_t DIVIDER = 4;
static constexpr double RMT_DURATION_NS = 12.5; // Minimum time of a single RMT duration based on clock ns
static constexpr uint32_t T0H = 300;
static constexpr uint32_t T0L = 900;
static constexpr uint32_t T1H = 600;
static constexpr uint32_t T1L = 600;
static constexpr uint32_t TRS = 80000;
static constexpr rmt_item32_t bit0Data = {uint32_t(T0H / (RMT_DURATION_NS * DIVIDER)), 1, uint32_t(T0L / (RMT_DURATION_NS * DIVIDER)), 0};
static constexpr rmt_item32_t bit1Data = {uint32_t(T1H / (RMT_DURATION_NS * DIVIDER)), 1, uint32_t(T1L / (RMT_DURATION_NS * DIVIDER)), 0};
// Function registered at the RMT driver that converts regular uint8_t values containing r,g,b,w values
// to rmt_item32_t for each bit. (8 bit -> 32 * 8 bit)
static void IRAM_ATTR uint8ToRmtAdaptor(const void *src, rmt_item32_t *dest, size_t srcSize,
size_t wantedNum, size_t *translatedSize, size_t *itemNum)
{
if (src == NULL || dest == NULL)
{
*translatedSize = 0;
*itemNum = 0;
return;
}
size_t size = 0;
size_t num = 0;
uint8_t *psrc = (uint8_t *)src;
rmt_item32_t *pdest = dest;
while (size < srcSize && num < wantedNum)
{
for (int i = 0; i < 8; i++)
{
// MSB first
const bool isBitSet = *psrc & (1 << (7 - i));
pdest->val = isBitSet ? bit1Data.val : bit0Data.val;
num++;
pdest++;
}
size++;
psrc++;
}
*translatedSize = size;
*itemNum = num;
}
void Esp32DriverRGBW::begin(int gpio, int rmtChannel)
{
rmtChannel_ = rmtChannel;
transmitting_ = false;
rmt_config_t rmt_tx;
rmt_tx.channel = static_cast<rmt_channel_t>(rmtChannel);
rmt_tx.gpio_num = static_cast<gpio_num_t>(gpio);
rmt_tx.rmt_mode = RMT_MODE_TX;
rmt_tx.mem_block_num = 1;
rmt_tx.clk_div = DIVIDER;
rmt_tx.tx_config.loop_en = false;
rmt_tx.tx_config.carrier_level = RMT_CARRIER_LEVEL_LOW;
rmt_tx.tx_config.carrier_en = false;
rmt_tx.tx_config.idle_level = RMT_IDLE_LEVEL_LOW;
rmt_tx.tx_config.idle_output_en = true;
ESP_ERROR_CHECK(rmt_config(&rmt_tx));
ESP_ERROR_CHECK(rmt_driver_install(rmt_tx.channel, 0, 0));
rmt_translator_init((rmt_channel_t)rmtChannel, uint8ToRmtAdaptor);
}
void Esp32DriverRGBW::end()
{
ESP_ERROR_CHECK(rmt_driver_uninstall((rmt_channel_t)rmtChannel_));
}
void Esp32DriverRGBW::writeSync(const uint32_t *rgbwData, int numLeds)
{
waitForTransmissionToFinish();
auto data = reinterpret_cast<const uint8_t *>(rgbwData);
ESP_ERROR_CHECK(rmt_write_sample((rmt_channel_t)rmtChannel_, data, numLeds * 4, true));
}
void Esp32DriverRGBW::writeAsync(const uint32_t *rgbwData, int numLeds)
{
waitForTransmissionToFinish();
auto data = reinterpret_cast<const uint8_t *>(rgbwData);
ESP_ERROR_CHECK(rmt_write_sample((rmt_channel_t)rmtChannel_, data, numLeds * 4, false));
transmitting_ = true;
}
bool Esp32DriverRGBW::waitForTransmissionToFinish(int waitMs)
{
if (!transmitting_)
return true;
auto ret = rmt_wait_tx_done((rmt_channel_t)rmtChannel_, waitMs / portTICK_PERIOD_MS);
if (ret == ESP_OK)
{
transmitting_ = false;
return true;
}
else
return false;
}

View File

@ -0,0 +1,55 @@
// overall layout:
// queue for each led stripe
//
enum class EffectID
{
OFF,
STATIC,
CIRCLE,
CIRCLE_WAVE,
COLOR_FADE,
RAINBOW_FADE,
};
struct EffectCircularConfig
{
float speed; // in degrees per second
float width; // width in degrees
float brightnessFalloffFactor;
};
template <typename TLedStrip>
class AbstractEffect
{
public:
virtual int operator()(TLedStrip &s) = 0;
};
template <typename TLedStrip>
class EffectCircle : public AbstractEffect<TLedStrip>
{
public:
EffectCircle(const EffectCircularConfig &cfg) : config_(cfg) {}
int operator()(TLedStrip &s) override;
private:
EffectCircularConfig config_;
float currentPosition_; // between 0 and 1
};
unsigned char effectStorage[128];
template <typename TLedStrip>
AbstractEffect<TLedStrip> *makeEffect(const char *buffer)
{
const EffectID &effectId = *reinterpret_cast<const EffectID *>(buffer);
if (effectId == EffectID::CIRCLE)
{
auto cfg = reinterpret_cast<const EffectCircularConfig *>(buffer + sizeof(EffectID));
return new (effectStorage) EffectCircle<TLedStrip>(*cfg);
}
// read effect id code from buffer
// read config from buffer
}

View File

@ -0,0 +1,83 @@
/// a static array of red-green-blue-white values together with free functions to set them
#pragma once
#include "helpers/ColorRGBW.h"
#include "Arduino.h" // TODO
#include <cstdint>
template <int TNumLeds>
class LedStripRGBW
{
public:
static constexpr int NUM_LEDS = TNumLeds;
void set(int idx, uint8_t r, uint8_t g, uint8_t b, uint8_t w)
{
// green: 0
// red: 8
// blue: 16
// white: 24
if (idx < 0 || idx >= NUM_LEDS)
Serial.printf("Out of bounds idx %i\n", idx);
else
data_[idx] = (g << 0) | (r << 8) | (b << 16) | (w << 24);
}
const uint32_t *rawData() const { return data_; }
constexpr static int numLeds() { return TNumLeds; }
private:
uint32_t data_[TNumLeds];
};
template <typename TLedStrip>
constexpr int numLeds()
{
return TLedStrip::NUM_LEDS;
}
template <int TNumLeds>
constexpr int numLeds(const LedStripRGBW<TNumLeds> &)
{
return TNumLeds;
}
template <int TNumLeds>
void setLedRGB(LedStripRGBW<TNumLeds> &s, int beginIdx, int endIdx, uint8_t r, uint8_t g, uint8_t b)
{
for (int i = beginIdx; i < endIdx; ++i)
s.set(i, r, g, b, 0);
}
template <int TNumLeds>
void setLedRGB(LedStripRGBW<TNumLeds> &s, int idx, uint8_t r, uint8_t g, uint8_t b)
{
s.set(idx, r, g, b, 0);
}
template <int TNumLeds>
void setLedRGBW(LedStripRGBW<TNumLeds> &s, int beginIdx, int endIdx, uint8_t r, uint8_t g, uint8_t b, uint8_t w)
{
for (int i = beginIdx; i < endIdx; ++i)
s.set(i, r, g, b, w);
}
template <int TNumLeds>
void setLedRGBW(LedStripRGBW<TNumLeds> &s, int idx, uint8_t r, uint8_t g, uint8_t b, uint8_t w)
{
s.set(idx, r, g, b, w);
}
template <int TNumLeds>
void setLedRGBW(LedStripRGBW<TNumLeds> &s, int idx, const ColorRGBW &c)
{
s.set(idx, c.r, c.g, c.b, c.w);
}
template <int TNumLeds>
void clear(LedStripRGBW<TNumLeds> &s)
{
for (int i = 0; i < TNumLeds; ++i)
s.set(i, 0, 0, 0, 0);
}

View File

@ -0,0 +1,19 @@
#pragma once
#include "containers/LedStripRGBW.h"
class Esp32DriverRGBW
{
public:
void begin(int gpio, int rmtChannel);
void end();
void writeSync(const uint32_t *rgbwData, int numLeds);
void writeAsync(const uint32_t *rgbwData, int numLeds);
bool waitForTransmissionToFinish(int waitMs = 1000);
private:
int rmtChannel_;
bool transmitting_;
};

View File

@ -0,0 +1,74 @@
#pragma once
#include "effects/Common.h"
#include "helpers/ColorRGBW.h"
#include "helpers/BellCurve.h"
struct EffectCircularConfig
{
float speed; // in degrees per second
float width; // width in degrees
ColorRGBW color;
};
template <typename TLedStrip>
class EffectCircular
{
public:
static constexpr auto NUM_LEDS = numLeds<TLedStrip>();
static constexpr int DELAY_MS = 10;
EffectCircular(const EffectCircularConfig &cfg, TLedStrip &ledStrip)
: config_(cfg),
ledStrip_(ledStrip),
currentPosition_(0),
widthInLeds_((numLeds(ledStrip) * cfg.width / 360)),
invWidth_(1.0f / widthInLeds_)
{
}
static constexpr int normalizeIdx(int idx)
{
return (idx < 0) ? (idx + NUM_LEDS) : (idx >= NUM_LEDS ? idx - NUM_LEDS : idx);
}
int operator()()
{
int startLed = int(currentPosition_);
float distDown = currentPosition_ - float(startLed);
float distUp = 1.f - distDown;
clear(ledStrip_);
// center
setLedRGBW(ledStrip_, normalizeIdx(startLed),
config_.color * bellCurveApproximation(distDown, invWidth_));
// down
for (int i = 1; i < widthInLeds_ / 2 + 1; ++i)
{
setLedRGBW(ledStrip_, normalizeIdx(startLed - i),
config_.color * bellCurveApproximation(distDown + i, invWidth_));
}
// up
for (int i = 1; i < widthInLeds_ / 2 + 1; ++i)
{
setLedRGBW(ledStrip_, normalizeIdx(startLed + i),
config_.color * bellCurveApproximation(distUp + i - 1, invWidth_));
}
currentPosition_ += config_.speed / 1000 / 360 * NUM_LEDS * DELAY_MS;
if (currentPosition_ > NUM_LEDS)
currentPosition_ -= NUM_LEDS;
//Serial.printf("Current pos %f led %d width %d\n", currentPosition_, normalizeIdx(startLed), widthInLeds_ / 2 + 1);
return DELAY_MS;
}
private:
EffectCircularConfig config_;
TLedStrip &ledStrip_;
float currentPosition_; // between 0 and num leds
int widthInLeds_;
float invWidth_;
};

View File

@ -0,0 +1,17 @@
enum class EffectID
{
OFF,
STATIC,
CIRCULAR,
CIRCLE_WAVE,
COLOR_FADE,
RAINBOW_FADE,
};
template <typename TLedStrip>
class AbstractEffect
{
public:
virtual int operator()(TLedStrip &s) = 0;
};

View File

@ -0,0 +1,17 @@
#include <cstdint>
static inline float bellCurveApproximation(float x, float inverseWidth)
{
if (x < 0)
x = -x;
const auto nx = x * inverseWidth * 4;
if (nx > 2)
return 0.0f;
const auto x2 = nx * nx;
const auto x3 = x2 * nx;
const auto res = 1.0f + 0.27606958941084f * x3 - 0.80213917882168f * x2;
return res < 0.0f ? 0.0f : res;
}

View File

@ -0,0 +1,16 @@
#pragma once
#include <cstdint>
struct ColorRGBW
{
uint8_t r, g, b, w;
ColorRGBW operator*(float s) const
{
return {uint8_t(s * r),
uint8_t(s * g),
uint8_t(s * b),
uint8_t(s * w)};
}
};

View File

@ -4,12 +4,28 @@
#include <MFRC522.h> #include <MFRC522.h>
#include "LedControl.h" #include "LedControl.h"
#include "rotary_encoder.h" #include "rotary_encoder.h"
#include "LedAnimation.h"
MFRC522 rfid(5); // Instance of the class #include "containers/LedStripRGBW.h"
#include "drivers/Esp32DriverRGBW.h"
#include "effects/Circular.h"
MFRC522 rfid; // Instance of the class
MFRC522::MIFARE_Key key; MFRC522::MIFARE_Key key;
LedStrip led(144, 13); //LedStrip led(46, 23);
LedStripRGBW<51> ledStrip;
Esp32DriverRGBW ledDriver;
EffectCircular<decltype(ledStrip)> effectFox(EffectCircularConfig{60.0f, 180.0f, ColorRGBW{15, 230, 230, 0} * 0.2f},
ledStrip);
EffectCircular<decltype(ledStrip)> effectOwl(EffectCircularConfig{360.0f, 180.0f, ColorRGBW{0, 0, 0, 150} * 0.2f},
ledStrip);
bool owl = false;
bool fox = false;
void tag_handler(uint8_t *sn) void tag_handler(uint8_t *sn)
{ {
@ -22,22 +38,29 @@ void tag_handler(uint8_t *sn)
if (sn[4] == 0x30) if (sn[4] == 0x30)
{ {
Serial.println("Fuchs"); Serial.println("Fuchs");
////////////////////////////////////////////////////////////////////////////////////led.setAll(0, 0, 254, 0); fox = true;
led.setRange(led.numLeds() - 40, led.numLeds(), 0, 0, 243, 0); owl = false;
////////////////////////////////////////////////////////////////////////////////////
//led.setRange(0, 50, 0, 0, 243, 0);
//led.setRange(led.numLeds() - 40, led.numLeds(), 0, 0, 243, 0);
} }
if (sn[4] == 0xf0) if (sn[4] == 0xf0)
{ {
Serial.println("Eule"); Serial.println("Eule");
//led.setAll(0, 0, 0, 254); owl = true;
led.setRange(led.numLeds() - 40, led.numLeds(), 0, 0, 0, 254); fox = false;
//led.setRange(0, 50, 0, 0, 0, 254);
//led.setRange(led.numLeds() - 40, led.numLeds(), 0, 0, 0, 254);
} }
} }
else else
{ {
led.clear(); //led.clear();
owl = false;
fox = false;
Serial.println("Nichts"); Serial.println("Nichts");
} }
led.transmit(); //led.transmit();
} }
QueueHandle_t event_queue; QueueHandle_t event_queue;
@ -45,14 +68,15 @@ rotary_encoder_info_t info;
void setup() void setup()
{ {
Serial.begin(115200); Serial.begin(115200);
led.begin();
digitalWrite(5, 1); //led.begin();
ledDriver.begin(23, 0);
const rc522_start_args_t start_args = { const rc522_start_args_t start_args = {
19, // MISO 21, // MISO
18, // MOSI 5, // MOSI
22, // SCK 18, // SCK
23, // SDA 19, // SDA
VSPI_HOST, VSPI_HOST,
&tag_handler, &tag_handler,
125, // scan_interval_ms 125, // scan_interval_ms
@ -62,16 +86,26 @@ void setup()
rc522_start(start_args); rc522_start(start_args);
ESP_ERROR_CHECK(gpio_install_isr_service(0)); ESP_ERROR_CHECK(gpio_install_isr_service(0));
ESP_ERROR_CHECK(rotary_encoder_init(&info, GPIO_NUM_12, GPIO_NUM_14)); ESP_ERROR_CHECK(rotary_encoder_init(&info, GPIO_NUM_26, GPIO_NUM_27));
ESP_ERROR_CHECK(rotary_encoder_enable_half_steps(&info, false)); ESP_ERROR_CHECK(rotary_encoder_enable_half_steps(&info, false));
event_queue = rotary_encoder_create_queue(); event_queue = rotary_encoder_create_queue();
ESP_ERROR_CHECK(rotary_encoder_set_queue(&info, event_queue)); ESP_ERROR_CHECK(rotary_encoder_set_queue(&info, event_queue));
pinMode (2, OUTPUT); //button leds
digitalWrite(2, HIGH); //pinMode(33, OUTPUT);
//digitalWrite(33, HIGH);
//pinMode(12, OUTPUT);
//digitalWrite(12, HIGH);
//// button in
//pinMode(25, INPUT_PULLUP);
//pinMode(14, INPUT_PULLUP);
//pinMode(13, INPUT_PULLUP);
} }
bool btn2state = true;
SweepCircularAnimation animation(ColorRGB{0, 0, 255}, 100, 15, 0.7);
void loop() void loop()
{ {
/* /*
@ -82,7 +116,37 @@ void loop()
event.state.direction ? (event.state.direction == ROTARY_ENCODER_DIRECTION_CLOCKWISE ? "CW" : "CCW") : "NOT_SET"); event.state.direction ? (event.state.direction == ROTARY_ENCODER_DIRECTION_CLOCKWISE ? "CW" : "CCW") : "NOT_SET");
} }
*/ */
Serial.println(touchRead(15)); // get value of Touch 0 pin = GPIO 4
/*
for (int i = 48; i < ledStrip.numLeds(); ++i)
{
clear(ledStrip);
setLedRGBW(ledStrip, i, 0, 0, 255, 255);
Serial.println(i);
ledDriver.writeSync(ledStrip.rawData(), ledStrip.numLeds());
delay(3000);
}
*/
int delayVal;
if (owl)
delayVal = effectOwl();
else if (fox)
delayVal = effectFox();
else
clear(ledStrip);
ledDriver.writeSync(ledStrip.rawData(), ledStrip.numLeds());
delay(delayVal);
/*
auto delayMs = animation(led);
led.transmit();
delay(delayMs);
*/
/*
Serial.printf("btn1 %d btn2 %d rot %d\n", digitalRead(25), digitalRead(14), digitalRead(13));
delay(500); delay(500);
//digitalWrite(2, HIGH); btn2state = !btn2state;
digitalWrite(12, btn2state);
*/
} }